

An Overview of the High Frequency Terrain Assessment program HFTA

HFTA and your station

The HFTA program comes on the disk included with the ARRL Antenna Handbook

- Use HFTA to get a better understanding of how the surrounding terrain impacts your station.
- Use HFTA when determining your tower location and antenna heights.

KR9U - May 2016

HFTA takes ground elevation data, frequency and height of your antenna to calculate the take off angle.

HFTA is a ray-tracing program

HFTA calculates only horizontally polarized signals.

HFTA takes reflection and refraction properties into account

- The geometry of the first hop establishes the geometry for all succeeding hops.
- A significant loss of signal occurs with each hop.
 - Loss through lower layers of the ionosphere and scattering of signals at the reflection point.
 - Scattering of the signal at the earth reflection point.
 - Typically 7-10 dB of loss per hop.

HFTA needs terrain data to work. These are .PRO files. Get Terrian data here: http://k6tu.net/?q=TerrainProfiles

Do NOT use the MicroDEM program in the HFTA instructions.

Setup:

- Set the Frequency.
- Set Diffraction to ON in the Options tab.
- Left Click on the empty space in the Terrain Files. Select the .PRO file for the direction to analyze.
 - For instance, AZI-45.00.PRO for 45 degrees.
- Left click on "Ant. Type" white space box and select the type of antenna.
- Left click on the "Heights" box and input the antenna height you want to analyze.
- Left click on the "Elevation File" white space and select the elevation file for W9 to the area of the world you want to analyze.

For instance, W9-IN-EU.PRN

• Elevation Files (Signal of Arrival) are .PRN files

- Installed as part of the program install files.
- For the Indiana area, select W9-IN-XX.PRN Where 'XX' is the direction of interest.
 - (EU) Europe
 - (JA) Far East
 - (SA) South America
 - (AS) South Asia
 - (AF) Southern Africa
 - (OC) South Pacific

** For South Asia you would use: W9-IN-AS.PRN

Plot the Terrain KR9U terrain looking at EU

KR9U terrain looking at Japan with various heights, flat terrain

×

Out File

<u>Close</u>

KR9U to Europe over Actual Terrain, 50 and 100 ft. Antennas, 14.2 MHz

KR9U to Asia, 50 and 100 ft. Antennas, 21.1 MHz

KR9U to South America, 50 and 100 ft. 14.2 MHz

KR9U to Asia Varoius Antenna Heights over Flat Ground, 14.2 MHz

Which Antenna would you use?

生 HFTA (HF Terrain Assessment)						
	HFTA,	Help				
	Version 1.04, Copyright 2003-2004, ARRL, by N6BV, Mar. 02, 2004					
	Frequency:		Diffraction:ON			
	18 N		<u>O</u> ptions			
Terrain Files: Ant. Type Heights						
1:	AZI-45.00.PRO	2-Ele.	50	feet	🔽 Terrain 1	
2:	AZI-45.00.PRO	Dipole	75	feet	Terrain 2	Show Ants.
3:				feet	🔲 Terrain 3	Plot Torrain
4:				feet	Terrain4	<u>Piot terrain</u>
Ele	Elevation vation file: W9-IN-EU.	File: PRN	Max. Elev. A	ngle —	Compute	! <u>E</u> xit

>In Conclusion:

- \succ The latest version of HFTA is Version 1.04.
- \succ The ionosphere controls the elevation angle, not our transmit antennas.
- > We want our transmit antennas to be at the correct elevation to utilize the ionosphere conditions that support radio communications.
- > The first hop establishes the geometry for all succeeding hops.
- \succ HFTA will show you how your antennas cover the elevation angles.
- KE4PT Study on elevation angles: <u>http://www.arrl.org/files/file/QEX_Next_Issue/May-Jun_2011/QEX_5_11_Siwiak.pdf</u>
- > ARRL antenna book has study of elevation angles.

Latest ARRL instruction manual: 22 February 2013

http://www.arrl.org/files/file/Product%2520Notes/Antenna%2520Book/hfta.pdf